Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity.

نویسندگان

  • Christopher C Giza
  • Mayumi L Prins
  • David A Hovda
  • Harvey R Herschman
  • Jonathan D Feldman
چکیده

Fluid percussion (FP) brain injury leads to immediate indiscriminate depolarization and massive potassium efflux from neurons. Using Northern blotting, we examined the post-FP expression of primary response/immediate early genes previously described as induced by depolarization in brain. RNA from ipsilateral and contralateral hippocampus was harvested from immature and adult rats 1 h following mild, moderate, or severe lateral fluid percussion injury and compared against age-matched sham animals. C-fos gene expression was used as a positive control and showed marked induction in both pups (6-25-fold with increasing severity) and adults (9.7-17.1-fold). Kinase-induced-by-depolarization-1 (KID-1) and salt-inducible kinase (SIK) gene expression was increased in adult (KID-1 1.5-1.6-fold; SIK 1.3-3.9-fold) but not developing rats. NGFI-b RNA was elevated after injury in both ages (pups 1.8-6.1-fold; adults 3.5-5-fold), in a pattern similar to that seen for c-fos. Secretogranin I (sec I) demonstrated no significant changes. Synaptotagmin IV (syt IV) was induced only following severe injury in the immature rats (1.4-fold). Our results reveal specific severity- and age-dependent patterns of hippocampal immediate early gene expression for these depolarization-induced genes following traumatic brain injury. Differential expression of these genes may be an important determinant of the distinct molecular responses of the brain to varying severities of trauma experienced at different ages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat

Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...

متن کامل

P80: The Effects of Progesterone Receptors\' Antagonist RU-486 on BrainEdema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury

In previous studies, the neuroprotective effect of progestrone in diffuse traumatic brain injury has been shown. This study used mifepristone (RU-486), a potent progesterone receptor antagonist, to evaluatethe hypothesis that the neuroprotective effect of progesterone in traumatic brain injury is mediated by the progesterone receptors. The ovariectomized rats were divided into 6 groups. Brain i...

متن کامل

Study of Genes Expression Involved in Apoptosis (Bax, Survivin) After Induced Cold Injury on Sensorimotor Cortex of Mouse Brain and Treatment With Magnesium Chloride

Purpose: The purpose of this study was to investigate the expression of Bax and surviving after cold injury and the ability of magnesium chloride to inhibit of apoptosis. Materials and Methods: To produce cold injury, a metal probe cooled with liquid nitrogen was applied to the surface of the mouse intact skull above the parietal lobe by force of 100 gr for 30 sec. Brains were removed 72 h aft...

متن کامل

Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury

Objective(s): Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI). It was suggested that ellagic acid (EA), an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA...

متن کامل

Ameliorative effects of Hesperidin on radiation induced brain injury in rats

Background: Extensive research has been focused on radiation induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of hesperidin in an experimental radiation induced brain injury. Materials and Methods: 32 adult male Wistar-Albino rats were randomly divided into 4 groups (contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2002